
GraphAlg: Algorithm Support in a
Graph Database, Done Right
Daan de Graaf, Robert Brijder, Soham Chakraborty*,
George Fletcher, Bram van de Wall, Nikolay Yakovets

* TU Delft

others TU Eindhoven

About Me

● 1st year PhD @TU Eindhoven (Database Group)
● Current Research: Algorithm support in GDBs
● Research Interests:

○ Query Processing
○ Hardware Acceleration
○ Compilers

Types of Graph Queries

name: Alice name: ?

Friend
Local look-up

PageRank

Motivation Proposed Approach Key Features

Limitations of Graph Query Languages

Graph query languages are great for simple queries

CSV

Users waste resources and complicate workflows

by processing in external tools

… but lack expressive power for Graph Analytics

Motivation Proposed Approach Key Features

Traditional Approaches to Analytics in Databases
Approach Key Problems Available in

Built-in Algorithms Library - Fixed set of Algorithms

Pregel API - Performance issues
- Not analysable

User-defined operators - Unsafe
- Not analysable

Recursive CTE - Difficult to write
- Performance issues

Procedural SQL - Overhead
- Limited analysis

Algorithm DSL - Proprietary
- No integration with queries

Motivation Proposed Approach Key Features

What Should Algorithm Support Look Like?

● Flexible: Fully custom algorithms
● User-friendly: Clear and convenient syntax
● Fully integrated: Native support in the database
● Optimizable: Efficiently process large graphs

Motivation Proposed Approach Key Features

Introducing GraphAlg

● A language built for graph algorithms
● Fully integrated into AvantGraph1

● Highly optimizable
● Embed algorithms into queries

WITH ALGORITHM "

func TriangleCount(graph: Matrix<s1, s1, bool>) -> int {

 L = tril(graph);

 U = triu(graph);

 C = Matrix<int>(graph.nrows, graph.ncols);

 C<L> = cast<int>(L) * cast<int>(U.T);

 return reduce(C);

}"

CALL TriangleCount()

RETURN count

Gr
ap

hA
lg

Cy
ph

er

source: avantgraph.io

Motivation Proposed Approach Key Features

[1] v. Leeuwen, et al. 2022. AvantGraph query processing
engine. Proc. VLDB Endow. 15, 12

https://avantgraph.io

Computational Model

● Vertex-centric (Pregel)
● Vertex/Edge sets
● Linear Algebra

○ High-level operations that are easily parallelized
○ Semantics are well-defined and widely taught
○ Proven efficient for graph analytics, see GraphBLAS.

source: SIAMsource: GraphBLAS Forum

Motivation Proposed Approach Key Features

https://graphblas.org/
https://epubs.siam.org/doi/book/10.1137/1.9780898719918
https://graphblas.org/

Powerful Language, Small Core

● Reducible to core language, without loss of expressivity
● Equivalent to MATLANG1

● Loop construct balancing expressivity & optimizability

GraphAlg MATLANG +
Loops

Extended
Relational

Algebra
Reduce Transform Integrate with query

Motivation Proposed Approach Key Features

[1] Brijder et al. 2019. On the Expressive Power of Query Languages for Matrices. ACM Trans. Database Syst.

Cross-Optimization

● Unified IR for query and algorithm
● Eliminate query/algorithm interface boundary
● Holistic optimization & execution

Algorithm

Query

Unified IR

optimize
& execute

Motivation Proposed Approach Key Features

Benchmark: LDBC Graphalytics

● Expressivity: Support all algorithms in Graphalytics spec.
● Performance: Use Graphalytics synthetic and real-world datasets, comparing:

○ Reference implementations
○ DuckDB (Python API)
○ Neo4J (Pregel API)

Implications

● A significant jump of programmability for graph databases
● Blurring the line with graph analytics frameworks
● Graph databases as a platform for large-scale data analysis

Thanks!
Questions?

