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About Me

● 1st year PhD @TU Eindhoven (Database Group)
● Current Research: Algorithm support in GDBs
● Research Interests: 

○ Query Processing
○ Hardware Acceleration
○ Compilers



Types of Graph Queries

name: Alice name: ?

Friend
Local look-up

PageRank
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Limitations of Graph Query Languages

Graph query languages are great for simple queries

CSV

Users waste resources and complicate workflows 

by processing in external tools

… but lack expressive power for Graph Analytics
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Traditional Approaches to Analytics in Databases
Approach Key Problems Available in

Built-in Algorithms Library - Fixed set of Algorithms

Pregel API - Performance issues
- Not analysable

User-defined operators - Unsafe
- Not analysable

Recursive CTE - Difficult to write
- Performance issues

Procedural SQL - Overhead
- Limited analysis

Algorithm DSL - Proprietary
- No integration with queries
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What Should Algorithm Support Look Like?

● Flexible: Fully custom algorithms
● User-friendly: Clear and convenient syntax
● Fully integrated: Native support in the database
● Optimizable: Efficiently process large graphs
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Introducing GraphAlg

● A language built for graph algorithms
● Fully integrated into AvantGraph1

● Highly optimizable
● Embed algorithms into queries

WITH ALGORITHM "

func TriangleCount(graph: Matrix<s1, s1, bool>) -> int {

   L = tril(graph);

   U = triu(graph);

   C = Matrix<int>(graph.nrows, graph.ncols);

   C<L> = cast<int>(L) * cast<int>(U.T);

   return reduce(C);

}"

CALL TriangleCount()

RETURN count
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source: avantgraph.io
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[1] v. Leeuwen, et al. 2022. AvantGraph query processing 
engine. Proc. VLDB Endow. 15, 12

https://avantgraph.io


Computational Model

● Vertex-centric (Pregel)
● Vertex/Edge sets
● Linear Algebra

○ High-level operations that are easily parallelized
○ Semantics are well-defined and widely taught
○ Proven efficient for graph analytics, see GraphBLAS.

source: SIAMsource: GraphBLAS Forum
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https://graphblas.org/
https://epubs.siam.org/doi/book/10.1137/1.9780898719918
https://graphblas.org/


Powerful Language, Small Core

● Reducible to core language, without loss of expressivity
● Equivalent to MATLANG1

● Loop construct balancing expressivity & optimizability

GraphAlg MATLANG + 
Loops

Extended 
Relational 

Algebra
Reduce Transform Integrate with query
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[1] Brijder et al. 2019. On the Expressive Power of Query Languages for Matrices. ACM Trans. Database Syst.



Cross-Optimization

● Unified IR for query and algorithm
● Eliminate query/algorithm interface boundary
● Holistic optimization & execution

Algorithm

Query

Unified IR

optimize 
& execute
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Benchmark: LDBC Graphalytics

● Expressivity: Support all algorithms in Graphalytics spec.
● Performance: Use Graphalytics synthetic and real-world datasets, comparing:

○ Reference implementations
○ DuckDB (Python API)
○ Neo4J (Pregel API)



Implications

● A significant jump of programmability for graph databases
● Blurring the line with graph analytics frameworks
● Graph databases as a platform for large-scale data analysis



Thanks!
Questions?


